Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Classification tasks on ultra-lightweight devices demand devices that are resource-constrained and deliver swift responses. Binary Vector Symbolic Architecture (VSA) is a promising approach due to its minimal memory requirements and fast execution times compared to traditional machine learning (ML) methods. Nonetheless, binary VSA's practicality is limited by its inferior inference performance and a design that prioritizes algorithmic over hardware optimization. This paper introduces UniVSA, a co-optimized binary VSA framework for both algorithm and hardware. UniVSA not only significantly enhances inference accuracy beyond current state-of-the-art binary VSA models but also reduces memory footprints. It incorporates novel, lightweight modules and design flow tailored for optimal hardware performance. Experimental results show that UniVSA surpasses traditional ML methods in terms of performance on resource-limited devices, achieving smaller memory usage, lower latency, reduced resource demand, and decreased power consumption.more » « lessFree, publicly-accessible full text available June 22, 2026
- 
            Vector Symbolic Architecture (VSA) is emerging in machine learning due to its efficiency, but they are hindered by issues of hyperdimensionality and accuracy. As a promising mitigation, the Low-Dimensional Computing (LDC) method significantly reduces the vector dimension by 100 times while maintaining accuracy, by employing a gradient-based optimization. Despite its potential, LDC optimization for VSA is still underexplored. Our investigation into vector updates underscores the importance of stable, adaptive dynamics in LDC training. We also reveal the overlooked yet critical roles of batch normalization (BN) and knowledge distillation (KD) in standard approaches. Besides the accuracy boost, BN does not add computational overhead during inference, and KD significantly enhances inference confidence. Through extensive experiments and ablation studies across multiple benchmarks, we provide a thorough evaluation of our approach and extend the interpretability of binary neural network optimization similar to LDC, previously unaddressed in BNN literature.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            Brain-Computer interfaces (BCIs) are typically designed to be lightweight and responsive in real-time to provide users timely feedback. Classical feature engineering is computationally efficient but has low accuracy, whereas the recent neural networks (DNNs) improve accuracy but are computationally expensive and incur high latency. As a promising alternative, the low-dimensional computing (LDC) classifier based on vector symbolic architecture (VSA), achieves small model size yet higher accuracy than classical feature engineering methods. However, its accuracy still lags behind that of modern DNNs, making it challenging to process complex brain signals. To improve the accuracy of a small model, knowledge distillation is a popular method. However, maintaining a constant level of distillation between the teacher and student models may not be the best way for a growing student during its progressive learning stages. In this work, we propose a simple scheduled knowledge distillation method based on curriculum data order to enable the student to gradually build knowledge from the teacher model, controlled by an alpha scheduler. Meanwhile, we employ the LDC/VSA as the student model to enhance the on-device inference efficiency for tiny BCI devices that demand low latency. The empirical results have demonstrated that our approach achieves better tradeoff between accuracy and hardware efficiency compared to other methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available